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Abstract: In recent years, a new generation of robots integrated with artificial 
intelligence has rapidly proliferated across China. Drawing on firm-level tax survey data 
(2010-2016), city-level data (1999-2019), and micro-data from the China Labor-force 
Dynamics Survey (2012-2018), this paper constructs an instrumental variable based 
on city-level robot penetration to investigate the regional employment effects of robot 
adoption from multiple perspectives. The main findings are as follows: (1) Widespread 
robot adoption significantly strengthens the market position of incumbent firms, supports 
overall employment growth within these firms, and facilitates labor reallocation across 
sectors, with labor tending to shift toward industries characterized by larger average firm 
size. (2) Evidence at both the aggregated level and the individual level shows that while 
robot adoption markedly improves firm productivity, it slows the pace of job creation 
while simultaneously reducing job displacement. As a result, labor mobility at the regional 
level shows a declining trend. (3) Robot adoption generates significant market spillover 
effects. It fosters employment growth among incumbent firms but tends to slow the pace of 
entry of new firms, an important mechanism behind the observed deceleration in regional 
employment growth. (4) Heterogeneity analysis reveals that robots have a greater impact 
on job transitions for highly educated and middle-aged workers, increasing their preference 
for stable employment. No significant differences are found across occupational types or 
between genders in terms of job mobility impacts.
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1. Introduction
Since the turn of the 21st century, rapid advancements in artificial intelligence (AI) and information 

technology have profoundly reshaped both production processes and everyday life. As a representative 
technology of “new quality productive forces,” the new generation of industrial robots—integrated 
with AI—is seeing rapid adoption across China. At present, industrial robots are deployed across 60 
major industry categories and 168 sub-sectors of the Chinese economy. China has been the world’s 
largest industrial robot market for ten consecutive years. In 2022 alone, it produced over 440,000 units, 
accounting for more than 50% of global installations. Actively developing these new productive forces is 
crucial for boosting China’s industrial competitiveness and cultivating new engines of economic growth. 
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This will also accelerate the transition to high-quality development. At the same time, however, the rapid 
and widespread application of industrial robots has sparked considerable debate and concern over their 
disruptive impact on employment.

The growing concern over the employment impact of AI-based, next-generation automation 
primarily stems from a fundamental shift in the theoretical frameworks used to understand technological 
progress and job growth. New analytical perspectives argue that advancements in AI and robotics 
exhibit systematic differences from earlier, more traditional forms of technological progress. The 
conventional skill-biased technological change (SBTC) framework (Autor et al., 2003) posited that 
while technological progress might displace certain traditional jobs, such technological transformations 
typically lead to capital deepening and significant increases in productivity. The resulting expansion in 
output and reduction in prices would, in turn, stimulate increased demand, generating compensating 
and job-creating effects. This dynamic was expected to largely offset initial job displacement, meaning 
overall employment levels would not significantly decline due to technological advancement. 
Technological emphasized that fundamental technological changes, often referred to as factor-
augmenting technological innovation, would enhance efficiency across all stages of the work process.

In contrast to the SBTC framework, the more recently proposed task-based framework (Acemoglu 
& Restrepo, 2019) offers a different perspective. It posits that technological progress, exemplified 
by industrial robots and AI, is primarily characterized by automation task innovation. This means it 
specifically improves the efficiency of a particular task and does not necessarily lead to a broad increase 
in productivity across all production processes. If automation only boosts the efficiency of specific 
tasks without driving an overall enhancement in factor productivity or creating a significant number of 
new tasks, this type of advancement is considered a specific technological improvement within a task-
based model. Such task-based technological progress, the framework suggests, may lead primarily to 
substantial job displacement effects with minimal employment complementarity. Empirical evidence 
further supports this view: since 2000, alongside the rapid advancement of automation technology, 
there has been a marked decline in the growth of new job tasks (Autor & Salomons, 2018; Acemoglu 
& Restrepo, 2019). Moreover, recent empirical research has more finely distinguished between factor-
augmenting technological progress and automation technological progress in terms of their labor market 
impacts. These studies consistently find that while factor-augmenting technological progress has indeed 
had very little impact on employment growth, while task automated technological progress has generated 
significant avderse effects on employment and wage growth across virtually all skill and occupational 
groups (Autor et al., 2022; Kogan et al., 2023).

While many discussions emphasize differences in the nature of technology type—especially the 
shift from factor-augmenting to task- automated innovations—an alternative framework focuses on 
demand-side dynamics. It argues that today’s automation is not fundamentally different from earlier 
technological advances in its ability to boost productivity. Modern technologies like AI and robotics still 
deliver significant efficiency gains, comparable to those of past industrial revolutions. The key difference 
lies in the declining elasticity of demand. As societies modernize and basic needs are met, demand for 
many goods becomes far less responsive to changes in price, income, or productivity. For instance, from 
1850 to 1950, global price elasticity of demand for products like textiles, steel, and automobiles fell by a 
factor of eight (Bessen, 2019). As a result, even with prices falling and productivity rising substantially, 
demand expands only marginally—limiting the potential for job growth.

Thus, it is not that new technologies are more disruptive by nature, but that they now operate in a 
demand environment with less room for expansion. This structural shift weakens the job-creating effects 
that once offset labor displacement, making automation’s job impact more evident today.

Automation technologies often have heterogeneous effects on employment and income across skill 
levels and occupations. Early studies characterized industrial robots as routine-task-biased innovations. 
Using earlier data, researchers found that robots mainly replaced routine, middle-skilled jobs, while non-
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routine tasks, whether high-skilled or low-skilled—were harder to automate and thus grew in demand. 
This led to a pattern of job polarization, with employment increasing at both the high and low ends of 
the skill spectrum (Goos et al., 2014; De Vries et al., 2020; Reijnders et al., 2018; Graetz & Michaels, 
2018). More recent research, however, finds that automation may now exert stronger negative effects 
on high-skilled employment and wages (Feng & Graetz, 2020; Faber et al., 2022; Kogan et al., 2023). 
One explanation is that firms using robots are typically more productive and thus more likely to replace 
expensive, high-skilled labor. Replacing workers who require intensive education and training with 
automation can substantially boost firm profits.

Some studies emphasize that AI- and machine learning-based automation technologies are more 
likely than traditional industrial robots to substitute high-skilled labor, potentially narrowing the 
income gap between high- and low-skilled workers (Webb, 2020; Brynjolfsson, 2018). At the same 
time, as AI and machine learning continue to advance, automation is no longer confined to routine 
tasks. Increasingly, non-routine tasks are also being automated. According to estimates, around 47% 
of U.S. occupations are at high risk of automation (Frey & Osborne, 2017). With these advances, AI-
enabled robots are expanding rapidly beyond manufacturing and into service sectors such as healthcare, 
education, finance, media, warehousing, and transportation. This has driven a sharp rise in service sector 
automation. Since services employ a much larger share of the workforce than manufacturing in most 
countries, the large-scale deployment of intelligent technologies in services is expected to have far-
reaching impacts on global labor markets (Baldwin, 2022).

It is important to distinguish between firm-level and regional-level analyses of the impact of 
industrial robots on employment, as they represent fundamentally different analytical frameworks. Firm-
level studies consistently find that robot-adopting companies are more productive than non-adopters. 
Robots use significantly boosts firm productivity and, in many cases, even increases employment rather 
than displacing it (Acemoglu et al., 2022; Bessen et al., 2019; Domini et al., 2020; Feng & Graetz, 
2020; Koch et al., 2021). This is largely because such studies focus on the internal effects within the 
adopting firm and typically ignore broader market spillovers. However, some research has shown that 
while a firm’s own robot adoption may raise its employment, the adoption of robots by competitors can 
negatively affect its job growth. Once these spillover effects are taken into account, higher regional robot 
penetration is found to have a significant negative impact on overall employment growth (Acemoglu et 
al., 2020). Therefore, regional-level analyses offer a more complete picture of the labor market effects 
of automation by capturing both direct impacts on incumbent firms and indirect effects such as job 
reallocation resulting from firm entry and exit triggered by widespread robot adoption.

In recent years, Chinese scholars have conducted extensive research on the impact of industrial 
robots on China’s labor market. Most studies find that widespread robot adoption in manufacturing has 
had significant displacement effects on employment (Wang & Dong, 2020; Kong et al., 2020; Song & 
Zuo, 2022; Dong et al., 2022; Wang et al., 2022; Yan et al., 2020). However, some studies offer different 
perspectives. Li et al. (2021) report that robot adoption significantly boosts employment at the firm level. 
Others find that robots reduce inflows of migrant labor but do not significantly affect overall regional 
employment (Li et al., 2021; Chen et al., 2022). Several studies focus on the differentiated impact of 
robots on routine and non-routine jobs. Findings suggest that robot adoption tends to reduce employment 
and wages in routine tasks while promoting job growth and income in non-routine roles (Yu et al., 2021; 
Wei, Zhang & Du, 2020; He & Liu , 2023).

Other research explores the role of AI in reshaping occupational structures, showing that AI can 
induce shifts from traditional to emerging occupations (Wang et al., 2023). Meanwhile, some studies 
point to a deterioration in labor welfare associated with robot adoption, driven by wage cuts and reduced 
implicit benefits (Zhang et al., 2023).

This paper expands the analysis along several dimensions. First, drawing on firm-level tax survey 
data (2010-2016), city-level data (1999-2019), and micro-level labor force survey data (2012-2018), 
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1 For details, please contact us for the supplementary theoretical model.

we examine how changes in regional industrial robot penetration affect employment reallocation, 
with particular attention to labor mobility at the regional level. Unlike prior studies, our results show 
that robot adoption significantly displaces employment not only in manufacturing but also in non-
manufacturing sectors. Overall, it leads to a marked decline in regional labor reallocation. Second, 
taking market spillover effects into account, we distinguish between the impact of robot adoption 
on employment in incumbent firms versus all firms, including entrants and exits. The results show 
that robots do not significantly reduce employment in incumbent firms; on the contrary, they slightly 
promote overall job growth of those firms. However, widespread robot adoption significantly deters 
new firm from market entry, which ultimately suppresses net employment growth at regional level. 
This perspective—differentiating between incumbent and all firms to evaluate the broader employment 
impact—has been largely neglected in prior research on China’s labor market. Third, to ensure 
robustness, we not only examine robot impacts ,, of employment using aggregated dataset but also 
investigate those impacts using a large survey dataset over the period of 2012 to 2018, the China Labor 
Force Dynamics Suvey This allows us to assess how regional robot penetration affects job transitions 
across age, occupation, education, and gender groups. We find that robot adoption significantly lowers 
the occurrence of job switching, particularly for highly educated and middle-aged workers. In contrast to 
earlier studies, we find no significant variation in transition effects across occupational types. 

The remainder of the paper is organized as follows: Section 2 outlines the empirical framework 
and identification strategy; Section 3 presents stylized facts on China’s labor market; Section 4 reports 
empirical results and interpretation; and Section 5 concludes with key implications.

2. Empirical Framework and Identification 
This study develops a theoretical model based on the analytical frameworks of Acemoglu 

& Restrepo (2020) and Faber et al. (2022), which explore the impact of robotics on employment 
growth and labor mobility. Specifically, we examine how changes in regional robot penetration affect 
employment reallocation through three main channels: the direct displacement effect, the productivity-
price-demand effect, and the labor supply-income effect1.

2.1 Evidence from Firmand City-Level Data
Drawing on influential studies that examine the labor market impacts of artificial intelligence 

and industrial robots (Acemoglu & Restrepo, 2020; Doms et al., 2020; Autor et al., 2021), this paper 
employs a long-difference empirical specification for causal identification. This methodological choice 
is motivated by three main considerations: First, the robot Bartik instrumental variable (IV) approach 
essentially operates as a different version of the difference-in-differences (DiD) method. Constructing 
the Bartik IV allows us to capture the technological shock of robot adoption over a defined period, which 
facilitates a more accurate identification of its true effects. Accordingly, the long-difference specification 
is particularly appropriate for modeling the continuous treatment effect (Goldsmith-Pinkham et al., 
2020; Borusyak et al., 2022). Second, compared to using panel data with two-way fixed effects (TWFE), 
the long-difference model controls for baseline levels in the pre-treatment period. This helps mitigate 
the problem of negative weighting caused by heterogeneous treatment effects across multiple time 
points (De Chaisemartin & D’Haultfeuille, 2020). It also avoids the endogeneity risk that can arise from 
including post-treatment control variables, which may themselves be affected by the key explanatory 
variable. Such interactions can complicate causal inference (Caetano & Callaway, 2022). Third, the long-
difference approach facilitates placebo tests to assess pre-trend equivalence prior to the robot shock, 
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thereby enhancing the transparency and credibility of the empirical analysis.
Based on this framework, we estimate the following empirical equation using data aggregated at the 

prefecture level:

                   (1)

In empirical equation (1), the dependent variable ΔYi,c(t0,t1) measures the change in employment 
indicators for a given industry i within a prefecture-level c from time t0 to t1. To capture the overall 
dynamics of labor mobility and reallocation at the regional level, i define the dependent variable 
by drawing on the representative studies of labor reallocation and job flows (Davis & Haltiwanger, 
1992). Following established methodologies, we decompose employment dynamics into the following 
components: job creation, job destruction , job net growth, job reallocation effect, and net job 
reallocation effect, as expressed in the following equation:

Using aggregated data at the prefecture-level, we can only obtain the aggregate employment 
indicator for each industry within that city, without access to more detailed employment components. To 
address this limitation, we use firm-level tax survey data to calculate the following indicators for each 
prefecture-level :

Job Creation change:  where Δsempt1 represents 

the number of employees at firm s at the end of the year t1 minus the number at the beginning of the 
year. Δsempt0 denotes the number of employees at firm s at the end of the year t0 minus the number at the 
beginning of the year.

Similarly, we define the Job Destruction change as:

Job Net Growth Rate:

Job Reallocation change: 

Net Job Reallocation change: 

It is important to note that, because the firm-level tax survey sample does not form a panel dataset 
over time, the above indicators are calculated using the number of employees at the end of each year 
minus the number at the beginning of the same year for each firm. As such, they only reflect employment 
changes among incumbent firms within the given year. These above indicators do not capture 
reallocation effects resulting from changes in the survey sample or from firm entry and exit. To reflect 
the total employment change that includes these factors, the calculation would be:

where sempt1 and sempt1 denote the average number of employees across all firms in the survey 
year, including those affected by survey sample adjustments as well as firms that entered or exited 
during that year. To better understand the relationship between ΔANETi,c,(t0, t1) and ΔNETi,c,(t0, t1), and 
to clarify the mechanisms through which robots affect employment growth, we decompose overall 
employment growth into three components: (1) employment changes resulting from firm entry and exit, 
(2) employment changes caused by incumbent firms at each year, and (3) cross-period employment 
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adjustments caused by continuously operating firms. Specifically:

Employment changes resulting from firm sample adjustment 
(entry and exit)(ΔNet_ADJ)

Cross-period employment adjustments caused by continuously 
operating firms (ΔNET_INC)

Employment changes caused by incumbent firms (ΔNET)

The first and second terms in the decomposition represent employment changes among firms whose 
employment levels did not change within the year (i.e., Δsempt1 

=0 and Δsempt0=0
 
), but did change across 

periods. The first term captures the difference in total employment between firms newly entering the 
survey sample at the end of the period t1 and firms exiting the sample by that time (ΔNET_ADJ). The 
second term reflects the net employment change from continuously operating firms that had no within-
year employment change, but experienced overall adjustments between periods (ΔNET_INC ). The third 
term represents the overall employment change (ΔNET ) caused by within-year adjustments among 
incumbent firms ( Δsempt1 

≠0 and Δsempt0 
≠0 ).

The overall employment reallocation effect in the labor market ΔAREAi,c,(t0,t1) includes not only job 
creation and destruction by incumbent firms, but also employment changes resulting from firm entry (job 
creation, ΔJCi,c,(t0,t1)

Entry  ) and firm exit (job destruction, ΔJDi,c,(t0,t1)
Exit  ). This overall reallocation effect can be 

expressed as:
Δ

The overall employment reallocation effect includes both the reallocation resulting from 
employment changes within incumbent firms ΔRETi,c,(t0,t1) and the reallocation caused by firm entry 
and exit ΔREAi,c,(t0,t1)

EnEx . To comprehensively assess the impact of robots on labor market reallocation, we 
examine both the reallocation effects within incumbent firms and the influence of robots on firm entry 
and exit.

It is important to note that in the tax survey data from 2010 to 2016, a total of over 1.35 million 
firms were surveyed across the two years. Among them, fewer than 11,200 firms appeared in both 2010 
and 2016 and showed no employment change in the respective years. These firms account for only 0.6% 
of the full sample in terms of firm count and employment share, and thus have a negligible impact on 
overall employment changes. Therefore, this study primarily focuses on the first and third components of 
employment change: those resulting from firm sample adjustments (which include actual firm entry and 
exit as well as changes due to survey sampling) and from incumbent firms.

RBKc,(t0,t1) is the core explanatory variable in this study, representing the industrial robot penetration 
rate at the prefecture level. We construct a prefecture-level Bartik variable by combining industry-level 
robot installation density with the region’s baseline employment share across industries. Specifically:

RBKc,(t0,t1) =[chnbkc,(t0,t1), eurobk6c,(t0,t1), eurobk5c,(t0,t1)]

where chnbkc,(t0,t1) denotes the robot Bartik variable, constructed using China’s industry-level robot 
installation density and the regional industry employment share:
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where lci,1995 represents the employment share of a prefecture-level c in industry i in 1995, based on 
industry classification. APRi,(t0,t1)

chn  indicates the average rate of change in robot installation density (per 
thousand workers) in industry i in China from time t0 to t1. Specifically:

Ri,t1
chn and Ri,t0

chn represent the stock of installed robots in China’s industry i at times t1 and t0, respectively.   
Li,1995

chn  denotes the number of employees in China’s industry i in 1995. To account for asymmetries in 
output growth across industries, we apply a correction by multiplying each industry’s output growth rate 
over the sample period gi,(t0,t1)

chn  by its initial robot density.
An endogeneity issue exists between the Bartik variable for robot penetration in Chinese prefecture-

level regions and local employment changes. To address this, we construct an instrumental variable (IV) 
based on robot adoption trends in other countries. The IV must meet not only the relevance condition 
but, more importantly, the exclusion restriction (uniqueness) assumption. To satisfy these requirements, 
selected countries must meet several criteria: First, they should have adopted robots earlier than China, 
representing the technological frontier and providing a demonstration effect that could influence China’s 
adoption behavior. Second, their robot adoption speed and density changes during the same period 
should exhibit a trend similar to that of China, enabling the IV to effectively predict China’s robot 
penetration. Third, these countries must not have strong industrial competition or complementarity with 
China. If such relationships exist, robot adoption in these countries could indirectly affect China’s labor 
market—for example, through intensified outsourcing or reshoring (Krenz et al., 2021; Faber, 2020)—
thus violating the exclusion restriction.

Accordingly, countries such as the United States, South Korea, Japan, and Germany, which have 
had significant prior investment in China, or emerging economies like India, Vietnam, and Mexico, 
which compete directly with China in global manufacturing and have increasingly adopted robots, may 
influence China’s labor market through capital relocation. As a result, robot adoption data from these 
countries should not be used to construct the IV for China’s robot penetration rate.

Following the principles outlined above, this paper first constructs a Bartik instrumental 
variable eurobk6 using data from six European countries with advanced industrial foundations: 
Denmark, Sweden, Finland, the Netherlands, France, and Italy. These countries were among the 
earliest to adopt automation technologies and were not only far ahead of China in the early stages 
of automation adoption, but also ahead of other developed nations such as the United States, Japan, 
Germany, and the United Kingdom (Acemoglu & Restrepo, 2020). Additionally, due to their relatively 
small economic size, these countries exhibit weaker direct industrial competition and complementarity 
with China. One limitation, however, is that their pace of robot adoption has lagged behind China in 
recent years.

To address this, we further construct an alternative Bartik instrument eurobk5 using data from five 
other European countries with solid industrial bases: Austria, the Czech Republic, Hungary, Slovakia, 
and Slovenia. These countries adopted robotics earlier than China and have demonstrated more recent 
trends in robot adoption that are closer to China’s trajectory. Moreover, they maintain relatively low 
levels of industrial competition and complementarity with China, making them better suited to satisfy the 
exogeneity assumption required for instrumental variables. All eleven countries are EU members, which 
ensures consistency in data sources and enhances the comparability and reliability of the constructed 
Bartik instruments.
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Figure 1: Average Robot Penetration Rate Changes in China and Six European Countries

Figure 2: Average Robot Penetration Rate Changes in China and Five European Countries
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Figures 1 and 2 compare the average changes in robot penetration across major industries in six and 
five European countries, respectively ( APR ), with the corresponding changes in Chinese industries over 
a similar time period. The size of each circle represents the average level of employment in 1995—the 
base year—in both China and the European countries. The 45-degree diagonal line indicates a one-to-
one relationship between changes in the two regions. With the exception of sectors where robot adoption 
remains relatively low—such as agriculture, construction, mining, and gas supply—most manufacturing 
and service sectors are clustered around the 45-degree line. This indicates that the industry-level changes 
in robot penetration observed in these European countries are strong predictors of corresponding changes 
in China. This pattern lends strong support to the validity of using robot adoption trends in European 
countries as an instrumental variable. The primary channel through which European robot adoption 
affects China’s labor market is via its influence on China’s own adoption of robotics. Other indirect or 
confounding channels appear limited, which is essential for satisfying the exclusion restriction required 
for valid instrumental variable identification.

ΔXi,c,(t0,−T, t0) represents the pre-trend change variable , T periods prior to time t0. It is used to control 
for the influence of pre-existing trends on the potential outcome variable, with a lead period of T=10. 
Specifically, it includes changes in total employment, population size, fixed asset investment, and per 
capita wages in each prefecture-level region, T periods prior to the treatment.

Basec denotes time-invariant control variables at the prefecture- level, with 2003 used as the base 
year2. These controls include the share of tertiary industry, average wage level, total passenger and 
freight transport volume, R&D investment ratio, the employment share of foreign direct investment 
(FDI) enterprises, wastewater discharge density, and the employment shares of major industry categories 
in each prefecture-level region. Including employment shares by industry category is particularly 
important. According to theoretical and empirical findings (Ado et al., 2019), when constructing Bartik 
instrumental variables, regional industrial structures that are very similar may lead to correlated error 
terms across regions. If not properly accounted for, this can result in underestimated standard errors and 
wrong statistical inference. Moreover, theory indicates that if the sum of baseline industry employment 
shares does not equal one, overall industrial employment shares must be controlled for to ensure validity 
(Borusyak et al., 2022). To address these concerns, we directly control for each region’s employment 
shares across major industries in the base year. ηi represents industry fixed effects, and εi,c denotes the 
error term.

2.2 Identification Using Micro-level Survey Data
This study also utilizes individual and household-level data from the China Labor-force Dynamics 

Survey (CLDS) to examine the impact of industrial robots on job outcomes and occupational transitions 
(or job transition) . In addition, we explore heterogeneity in these effects across different groups. The 
empirical model is specified as follows:

                   (2)
where jbstatusk,c,(t0,t1) is a binary variable indicating whether an individual k experienced an employment 
change or occupational transition between time t0 and t1. We define this outcome as follows:

Corresponding to the aggregated indicator of job creation effect, jobstk,c,(t0,t1) is coded as 1 if an 
individual started a new job or occupation between time t0 and t1, and 0 otherwise. For the aggregated 

2 Other pre-trend years could be used as the base without affecting the empirical results; 2003 was chosen because it has the most complete set of 
indicators at the prefecture level.
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indicator of job destruction, jobedk,c,(t0,t1) is coded as 1 if an individual ended their existing job or 
occupation between t0 and t1, and 0 otherwise. For the job reallocation indicator, jobreak,c,(t0,t1) is set to 1 if 
an individual experienced any job or occupational status change between t0 and t1, and 0 otherwise. Xk,c 
denotes a set of individual-level control variables, Xk,c =[Agek,c,Genderk,c,Eduk,c,Occk,c]. These include age 
Agek,c, gender Genderk,c, education level Eduk,c, and occupational category Occk,c=[govk,c, prok,c, clerkk,c, 
busik,c, agrk,c, mafk,c]. Occupations are grouped into six broad types: 

(1) leaders and managers in government agencies (govk,c), 
(2) professional and technical personnel (prok,c), 
(3) clerical staff (clerkk,c), 
(4) social service workers (busik,c), 
(5) agricultural, forestry, animal husbandry, and fishery workers (agrk,c), 
(6) manufacturing and production workers (mafk,c).
Equation (2) includes interaction terms between the Bartik-type robot penetration variable and 

individual characteristics RBKc,(t0,t1)×Xk,c  to examine heterogeneity in the effect of robot adoption on 
job and occupational transition probabilities. The core explanatory variables and all other controls are 
defined in the same way as in Equation (1). δh represents household fixed effects, and σk,c denotes the 
error term.

Table 1: Definitions of Key Variables

Key variables Variable explanation and definition

Based on aggregate 
firm and city-level 
data

ΔANET Total employment growth rate (all firms)

ΔAREA Total employment reallocation change (all firms)

ΔNET_ADJ Employment growth due to sample adjustment (including firm entry and 
exit)

ΔNET_INC Cross-period employment change (continuous firms)

ΔNET  Net job growth rate (incumbent firms)

ΔJC  Job creation change (incumbent firms)

ΔJD  Job destruction change (incumbent firms)

ΔREA  Job reallocation change (incumbent firms)

ΔNEA  Net job reallocation change (incumbent firms)

ΔEntry Firm entry rate change

ΔExit Firm exit rate change

ΔEnEx Firm entry and exit rate changes

Based on china 
labor-force dynamics 
survey (clds) data

jobst Individual starts new job: defined as 1 if the individual starts a new job, 0 
otherwise.

jobed Individual ends existing job: defined as 1 if the individual ends an 
existing job, 0 otherwise.

jobre Individual’s job transition: defined as 1 if the individual starts or ends a 
job, 0 otherwise.

Core explanatory 
variable definitions

chnbk Prefecture-level Bartik variable (based on China’s industry robots)

eurobk6 Prefecture-level Bartik instrumental variable (based on 6 European 
countries’ industry robots)

eurobk5 Prefecture-level Bartik instrumental variable (based on 5 European 
countries’ industry robots)
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3. Stylized Facts on China’s Employment Status: Overview and Descriptive Analysis
3.1 Overview 

The indicators used to measure employment reallocation at the prefecture-level regions are derived 
from the National Tax Survey Database (2010-2016), jointly administered by the State Taxation 
Administration and the Ministry of Finance. This annual survey covers more than 650,000 enterprises, 
including both key surveyed enterprises (80%) and randomly sampled firms (20%). The dataset spans 
large and medium-sized industrial firms, a wide range of small-scale service enterprises, and some 
individual businesses. Compared to datasets limited to above-scale industrial enterprises, it offers a more 
representative view of overall employment dynamics in China. The significant turnover of sampled firms 
across years prevents the database from forming a strict panel, making it impossible to track longitudinal 
employment changes within the same enterprise. However, it does report the number of employees at 
both the beginning and end of each year for each firm, providing a solid empirical basis for analyzing 
firm-level employment fluctuations. 

Table 2 reports descriptive statistics from the 2010-2016 National Tax Survey of Enterprises. 
Based on more than 4.81 million firm-level observations, the data reveals substantial heterogeneity 
in both employment size and employment dynamics across firms. Notably, average employment per 
firm is significantly higher than the median, highlighting the skewed distribution of firm size. Across 
all industries, the average number of employees per firm per year is approximately 148, whereas the 
median is only 23. This indicates that while a small number of large firms employ many workers, the 
majority of firms are small or medium-sized with considerably fewer employees. Regarding employment 
dynamics, around 1.325 million firm-year observations (27.5% of the total) show an increase in end-
of-year employment relative to the beginning of the year—indicating job creation. In contrast, about 
1.088 million observations (22.5%) experienced employment declines—indicative of job destruction. 
Together, these figures suggest that approximately half of all firm observations experienced employment 
adjustments in a given year, while the remaining half remained stable. On average, firms that expanded 
employment added about 40 workers per year, while those that downsized lost about 36 workers annually. The 
median values for both job creation and destruction are much lower than the respective averages, underscoring 
that employment fluctuations are more significant among large firms compared to smaller ones.

By industry, other sectors (including agriculture, mining, construction, and gas/water/heat 
supply) exhibit significantly larger employment scales than manufacturing and services. The average 
annual employment per firm in these “other” industries exceeds 273 individuals, compared to 198 in 
manufacturing and 96 in services. The proportion of firms experiencing employment changes varies 
significantly across industries. In manufacturing, job creation and destruction observations account for 
over 64.7% of all samples, compared to 41.4% in services and 48.7% in other industries, indicating a 
higher rate of employment adjustments in manufacturing. For the average annual number of jobs created 
and lost per firm, manufacturing shows similar figures: approximately 45 new jobs and 43 lost jobs. 
In contrast, services and other industries exhibit greater job creation than loss. In services, average job 
creation is about 31 individuals, with destruction at 23 individuals. In other industries, average new jobs 
reach 69 individuals, with losses around 60 individuals. This suggests non-manufacturing firms drive 
employment growth more significantly than manufacturing firms. 

Table 3 presents data on approximately 94,000 instances of individual-level employment and 
occupational transitions, aggregated at the prefecture-level , and derived from the China Labor-force 
Dynamics Survey (CLDS) conducted by Sun Yat-sen University. The data span the survey years 2012, 
2014, 2016, and 2018, and capture information on the start and end dates of individual job spells. Prior 
to 2008, the number of individuals starting a new job exceeded those ending a existing job , although 
this gap showed a declining trend over time. However, since 2008, the number of individuals losing jobs 
began to outpace those finding new jobs , and the disparity between the two has widened steadily .



13China Economist Vol.20, No.4, July-August 2025

Table 2: Statistics on Enterprise Employment from Tax Survey Database (2010-2016)

Sector classification Indicator Observations Mean Median Min. Max. Standard 
deviation

All sectors

Start-of-year employment 4815882 146.1 23 0 2103378 2654.1 

End-of-year employment 4817327 149.3 23 0 2121354 2699.8 

Average employment 4815255 147.7 23.5 0 2112366 2670.2 

Job creation 1325560 40.5 6 1 144800 597.9 

Job loss 1088665 35.6 5 1 93047 483.5 

Manufacturing

Start-of-year employment 1660267 196.9 58 0 492530 1028.2 

End-of-year employment 1660825 199.3 58 0 533860 1070.8 

Average employment 1660224 198.1 59 0 513195 1028.2 

Job creation 570936 45.0 8 1 99576 580.9 

Job loss 503334 42.8 8 1 77905 453.8 

Services

Start-of-year employment 2703212 94.2 12 0 2103378 3357.3 

End-of-year employment 2703937 97.2 12 0 2121354 3409.5 

Average employment 2702686 95.7 12.5 0 2112366 3379.7 

Job creation 631148 30.8 5 1 144800 568.0 

Job loss 488357 23.4 4 1 71998 445.1 

Others

Start-of-year employment 452403 270.6 35 0 331664 1927.5 

End-of-year employment 452565 276.7 35 0 331664 1971.6 

Average employment 452345 273.6 35.5 0 331664 1930.9 

Job creation 123476 68.9 7 1 97077 791.8 

Job loss 96974 59.8 6 1 93047 745.5 

Source: National Bureau of Statistics (NBS) Firm-Level Tax Survey Database. “Other industries” include agriculture, forestry, fishing, animal 
husbandry, mining, construction, and the supply of gas, heat, electricity, and water. To ensure data reliability, firms reporting implausibly high 
employment figures—those with more than 3 million employees at either the beginning or end of the year—were excluded as clear outliers. 
Furthermore, for firms with annual employment changes exceeding 100,000 people, we conducted detailed cross-checks using publicly 
available online information regarding employment and business activity. Most of these were found to be statistical errors and were accordingly 
removed from the dataset.

Table 3: China Labor-force Dynamics Survey (CLDS), 2012-2018

Sample Job transition 2014-2018 2009-2013 2004-2008 2000-2004 Before 2000

Total
Start 7157 12160 9684 8039 35869

End 9701 14898 8023 6256 9262

by gender

Male
Start 3543 6164 4952 4231 18899

End 4254 6686 3405 2657 4926

Female
Start 3535 5960 4695 3766 16823

End 5355 8177 4591 3578 4303

by level of education

Junior middle school and below
Start 4174 6715 5718 5158 26765

End 6388 9348 5174 4173 6524

Technical secondary school / 
High school / Vocational college

Start 2247 4093 2993 2205 7802

End 2767 4582 2447 1802 2468

Bachelor’s degree and above
Start 729 1316 943 650 1201

End 527 906 382 254 234
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 Distribution by individual characteristics: Both men and women exhibit the aforementioned trends, 
though men show a clear and consistent employment advantage. Between 2000 and 2008, the number of men 
starting new jobs significantly exceeded those losing jobs. In contrast, for women, the number of job starts and 
job losses remained relatively close. After 2008, the disparity widened: women were notably more likely 
to lose jobs than to find new ones, and their employment outcomes lagged further behind those of men. 

 Distribution by educational attainment: Higher education confers a distinct employment advantage 
over lower education levels. From 2000 to 2008, individuals with a junior high school education or 
below typically started slightly more new jobs than they lost, though the figures were close. After 2008, 
this group experienced a sharp increase in job losses, clearly surpassing job gains. Among individuals 
with a mid-level education, job losses also exceeded new job starts after 2008, but the difference 
remained modest. In contrast, individuals with higher education consistently started more new jobs than 
they lost, both before and after 2008, with the employment advantage being especially significant in the 
pre-2008 period.

 Distribution by occupational category: The most evident shifts in the balance between new jobs 
gained and jobs lost occurred among agricultural, forestry, animal husbandry, fishery and sideline 
production workers, as well as manufacturing personnel. For other occupational categories, new job 
starts generally exceeded job losses before 2014, with a small gap between job starts and losses from 
2014 to 2018. However, for agriculture, forestry, animal husbandry, and fishery workers, job losses 
began to outpace job starts as early as 2004, with the gap widening thereafter. Between 2014 and 2018, 
job losses in this sector were more than double job starts. Similarly, for production and manufacturing 
personnel, job losses exceeded job starts after 2008, with a small initial gap that grew significantly after 
2014, when job losses far surpassed job gains.

3.2 Other Data Sources and Explanations
Robot installation data for constructing the industrial robot Bartik variable and its instrumental 

variables are sourced from the International Federation of Robotics. Employment statistics for Chinese 
prefecture-level by industry are obtained from the China City Statistical Yearbook. Industry-level 
employment data for the 11 EU countries are sourced from the EU KLEMS database. All other city-level 
data are drawn from the China City Statistical Yearbook, covering 1985-2021.

Sample Job transition 2014-2018 2009-2013 2004-2008 2000-2004 Before 2000

by job type

Leaders and managers in government 
agencies and enterprises

Start 110 109 80 66 222

End 108 72 54 38 64

Professionals and technical personnel
Start 626 1022 631 463 1650

End 647 858 454 312 385

Clerical and related workers
Start 304 612 380 270 712

End 302 424 227 162 134

Social and production service 
workers

Start 3129 3752 2362 1813 3700

End 3207 2779 1495 1108 1056
Agricultural, forestry, animal 
husbandry, Fishery production and 
support personnel

Start 918 1031 917 1040 14222

End 2043 2418 1037 765 1200

Production and manufacturing and 
related workers

Start 1867 3078 2449 2012 6580

End 2933 3366 2266 1844 3000

Source: Sun Yat-sen University , China Labor-force Dynamics Survey (CLDS).

Table 3 Continued
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Figure 3 illustrates the relationship between the robot Bartik variable for 296 Chinese prefecture-
level cities and the Bartik instrumental variable constructed using robot adoption data from six 
industrialized European countries. The scatter plots show the endogenous variable plotted against the 
instrumental variable, weighted by each city’s baseline employment size across different time periods. 
The plots reveal a strong correlation between robot penetration at the prefectural level cities in China 
and the Bartik instrumental variable. This indicates that the instrument—based on robot adoption 
trends in the six European economies—effectively predicts changes in robot penetration across Chinese 
prefecture-level cities over time. A similar pattern is observed when using Bartik instruments constructed 
from five of the European countries, with trends and characteristics closely aligned with those shown in 
Figure 3.

4. Empirical Results and Explanation
4.1 Empirical Results from Aggregated Firm-Level Data

This section begins by using China’s firm-level tax survey data to calculate employment change 
rates from 2010 to 2016 at the prefecture level cities for all surveyed firms across three broad sectors: 
manufacturing, services, and other industries. It also computes, at the same level, the change of job 
creation, job destruction, net employment , gross job reallocation, and net job reallocation based on 
incumbent firms. To examine the impact of industrial robot adoption on job market reallocation in 
China, we employ Bartik instrumental variables constructed from robot adoption patterns in eleven 
EU countries. Table 4 presents the results from two-stage least squares regressions using instrumental 
variables.

Column (1) uses the overall employment growth rate of all firms as the dependent variable. Both the 
two-stage and reduced-form regression coefficients are significantly negative at the 1% level, indicating 
that greater robot penetration significantly suppresses overall employment growth at the regional level. 

Figure 3: Changes in Robot Penetration in Chinese Cities vs. Six European Countries
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According to the IV regression, a 1% increase in robot penetration is associated with approximately a 
1% decline in employment growth—suggesting that industrial robots have a strong displacement effect 
on aggregate employment.

Columns (2) through (6) focus on incumbent firms to explore the reallocation effects of robot 
adoption. The regression results from both the two-stage estimations (Panel 1) and the reduced-
form regressions (Panel 3) are consistent in both direction and statistical significance. In Column 
(2), coefficients are significantly negative at the 5% level, indicating that higher robot penetration 
significantly reduces job creation among incumbent firms. The estimates suggest that a 1 percentage 
point increase in robot penetration leads to a 0.8% decline in job creation.

Column (3) also yields coefficients that are significantly negative at the 1% level, showing that 
rising robot penetration substantially decreases job destruction among incumbent firms. Specifically, a 
1% increase in robot penetration corresponds to roughly a 2%decline in the job destruction rate. Clearly, 
the reduction in job destruction exceeds the decline in job creation, indicating that robot adoption 
improve net employment growth for overall incumbent firms.Column (4) presents coefficients that are 
significantly positive at least at the 10% level, confirming that increased robot penetration promotes net 
employment growth among incumbent firms. The two-stage regression suggests that a 1% increase in 
robot penetration raises the net employment growth rate by approximately 0.88%.

Table 4: Automation on Job Reallocation (2SLS)

Panel 1
All firms Incumbent firms

(1) (2) (3) (4) (5) (6)
Explained variable ΔANET ΔJC ΔJD ΔNET ΔREA ΔNEA

chnbk -1.024***
(0.373)

-0.796**
(0.352)

-1.981***
(0.579)

0.877**
(0.443)

-1.135**
(0.456)

-1.874***
(0.408)

Base period control variables Yes Yes Yes Yes Yes Yes
Urban industry share Yes Yes Yes Yes Yes Yes
Industry fixed effects Yes Yes Yes Yes Yes Yes
Observations 741 739 741 739 741 739
Number of cities 247 247 247 247 247 247
Panel 2 First-stage estimated results (First_Stage)
First-stage coefficient 0.437
Kp.F value 29905.3 29817.9 29905.3 29817.9 29905.3 29817.9
Hansen J Ovid.
(probability value)

1.147
(0.284)

1.679
(0.195)

0.050
(0.823)

0.150
(0.699)

0.028
(0.866)

1.921
(0.166)

Panel 3 Reduced-form estimated results (OLS-ITT)
Explained variable ΔANET ΔJC ΔJD ΔNET ΔREA ΔNEA

eurobk6 -0.431***
(0.154)

-0.341**
(0.151)

-0.822***
(0.241)

0.359*
(0.189)

-0.471**
(0.190)

-0.790***
(0.174)

Calibrated R2 0.254 0.254 0.254 0.254 0.254 0.254

eurobk5 -0.443***
(0.162)

-0.346**
(0.155)

-0.853***
(0.252)

0.376*
(0.194)

-0.489**
(0.198)

-0.812***
(0.179)

Calibrated R2 0.233 0.149 0.162 0.068 0.133 0.255
Base period control variables Yes Yes Yes Yes Yes Yes
Urban industry share Yes Yes Yes Yes Yes Yes
Industry fixed effects Yes Yes Yes Yes Yes Yes
Observations 741 739 741 739 741 739
Number of cities 247 247 247 247 247 247
Note: Robust standard errors, clustered at the city level, are reported in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 
10% levels, respectively. The two-stage estimation simultaneously uses Bartik instrumental variables constructed from six European countries (eurobk6) 
and five European countries (eurobk5). The first-stage coefficient reflects the sum of the estimated coefficients for the two instruments.
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Columns (2) and (3) of Table 4 report significantly negative coefficients, indicating that higher 
regional robot penetration not only reduces potential job creation but also significantly lowers job 
destruction among incumbent firms. Moreover, the reduction in job destruction is larger in magnitude 
than the reduction in job creation. This suggests that while robot adoption may displace some potential 
employment opportunities, it also likely improves productivity within incumbent firms. At the aggregate 
regional level, this productivity enhancement may effectively offset the substitution effect on existing 
jobs.

Columns (1) and (4) of Table 4 estimate the impact of regional robot penetration on employment 
growth for all firms and for incumbent firms, respectively. The results show a significant negative 
effect on employment growth among all firms, but a significant positive effect for incumbent firms. 
This contrast is primarily explained by the employment growth decomposition discussed in Section 2. 
Specifically, overall employment growth for all firms reflects two components: changes in employment 
among incumbent firms and the effects of robot penetration on firm entry and exit. The findings suggest 
that the job displacement effect caused by changes in firm entry and exit due to rising robot penetration 
is larger than the net employment gains within incumbent firms.

Incumbent firms that adopt robots tend to be more productive. Widespread adoption of robotics 
likely enhances their productivity further, creating barriers to entry for new firms and pushing out less 
competitive rivals. This dynamic enables incumbent firms to expand their market share and employment. 
Such a mechanism is consistent with evidence from firm-level studies in other countries (Acemoglu et 
al., 2022; Koch et al., 2021).

Robot adoption leads to declines in both job creation and job destruction among incumbent firms, 
indicating reduced overall labor mobility at the regional level—fewer new employment opportunities 
and lower job exit rates. As a result, both gross and net labor reallocation growth rates for incumbent 
firms decline. This conclusion is supported by the results in Columns (5) and (6) of Table 4, where the 
estimated coefficients are significantly negative at the 5% level or lower. Column (5) reflects the gross 
reallocation effect, while Column (6) captures the net reallocation effect. The coefficients indicate that a 
1% increase in industrial robot penetration reduces the gross labor reallocation growth rate for incumbent 
firms by approximately 1.1% and the net reallocation growth rate by around 1.9% .

Furthermore, the first-stage results in Panel 2 of Table 4 demonstrate the strength and validity of the 
instrumental variables. Both the Hansen J overidentification test and the Kp.F statistic confirm that the 
two Bartik instruments used in this study are robust and well-specified.

Table 5 shows the impact of regional robot penetration on employment reallocation across different 
industries. The two-stage least squares (2SLS) estimates in Panel 1 examine the impact of robot 
penetration on employment dynamics within the manufacturing sector. The results show that increased 
industrial robot adoption significantly reduces overall employment growth in manufacturing. Moreover, 
robot penetration has statistically significant negative effects on both job creation and job destruction 
among incumbent firms, with a larger and more statistically significant effect on job destruction.

Specifically, a 1% increase in robot penetration leads to a decline of approximately 0.75% in the job 
creation growth rate, while reducing the job destruction growth rate by about 1.6 %. Since the decline in 
job destruction exceeds the decline in job creation, robot adoption tends to generate a net employment 
gain among incumbent manufacturing firms. Column (4) provides further evidence, showing that 
increased robot penetration is associated with a positive—albeit statistically insignificant—effect on net 
employment growth for incumbent firms in manufacturing.

However, despite reducing job destruction among incumbent firms, robot adoption still has a 
significant negative impact on overall employment growth across all manufacturing firms. This suggests 
that the displacement effect—mainly driven by firm entry and exit—is more substantial than the 
productivity-induced gains among incumbents. Additionally, Columns (5) and (6) present coefficients 
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that are significantly negative at the 5% level or lower, indicating that robot adoption also reduces labor 
mobility within the manufacturing sector at the regional level. This reflects a decline in both gross and 
net job reallocation.

Table 5: Automation and Labor Market Reallocation by Industries (2010-2016)

Panel 1: Manufacturing

Total firms Incumbent firms

(1) (2) (3) (4) (5) (6)

Dependent variable ΔANET ΔJC ΔJD ΔNET ΔREA ΔNEA

chnbk -1.119**
(0.419)

-0.753**
(0.372)

-1.624**
(0.660)

0.434
(0.596)

-1.103**
(0.499)

-1.427**
(0.476)

First-stage coefficient 0.437

Kp.F value 28315.8 28049.8 28315.8 28049.8 28315.8 28049.8
Hansen J Ovid. 0.203

(0.652)
0.200

(0.655)
0.348

(0.555)
0.000

(0.991)
1.031

(0.310)
0.032

(0.858)(Probability value)
Calibrated R2 0.040 0.031 0.088 0.085 0.023 0.108

Panel 2: Service sector

Dependent variable ΔANET ΔJC ΔJD ΔNET ΔREA ΔNEA

chnbk -0.882**
(0.343)

-1.853***
(0.478)

-1.675**
(0.710)

-0.179
(0.681)

-1.528**
(0.516)

-2.146***
(0.600)

First-stage coefficient 0.437

Kp.F value 28315.8 28049.8 28315.8 28049.8 28315.8 28049.8
Hansen J Ovid. 0.104

(0.748)
0.007

(0.933)
0.267

(0.605)
0.231

(0.630)
0.004

(0.950)
0.810

(0.368)(Probability value)
Calibrated R2 0.107 0.065 0.016 0.045 0.010 0.072

Panel 3: Other sectors

Dependent variable ΔANET ΔJC ΔJD ΔNET ΔREA ΔNEA

chnbk -1.070**
(0.526)

0.267
(0.791)

-2.644**
(0.911)

2.373**
(0.859)

-0.773
(0.849)

-2.038**
(0.671)

First-stage coefficient 0.437

Kp.F value 28315.8 28049.8 28315.8 28049.8 28315.8 28049.8
Hansen J Ovid. 1.887

(0.169)
3.373

(0.066)
0.258

(0.612)
0.844

(0.358)
0.878

(0.349)
4.289

(0.038)(Probability value)
Calibrated R2 0.084 0.016 0.122 0.060 0.038 0.134

Base period control variables Yes Yes Yes Yes Yes Yes

Urban industry share Yes Yes Yes Yes Yes Yes

Observations 247 246 247 246 247 246

Number of cities 247 246 247 246 247 246

Note: Same as Table 4.

Panel 2 of Table 5 presents the impact of changes in robot penetration on employment reallocation 
within the service sector. Column (1) reports a negative coefficient significant at the 5% level, indicating 
that increased robot penetration exerts a significant displacement effect on service sector employment—
similar to the effect observed in manufacturing. Based on the regression coefficient, a 1% increase 
in robot penetration is associated with a decline of approximately 0.9% in the overall employment 
growth rate of the service sector, slightly lower than the 1.1 percentage point decrease observed in 
manufacturing. Columns (2) and (3) further show that rising robot penetration significantly reduces both 
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job creation and job destruction growth rates among incumbent firms in the service sector. In contrast to 
manufacturing—where the impact on job destruction is more evident—the effects in the service sector 
are relatively balanced. Specifically, a 1% increase in robot penetration is associated with a 1.8% decline 
in job creation growth and a 1.7% decline in job destruction growth. Consequently, the net employment 
effect for incumbent service firms is very small.

This implies that robot adoption exerts a greater suppressive effect on job creation in the service 
sector than in manufacturing, resulting in a more substantial negative impact on employment 
reallocation. Columns (5) and (6) support this, showing that a 1% increase in robot penetration reduces 
the gross employment reallocation growth rate by about 1.5 percentage points and the net reallocation 
growth rate by approximately 2.1 percentage points. The underlying reasons are twofold: first, the 
employment substitution shock caused by large-scale robot adoption in manufacturing tends to spill over 
into the service sector and other industries, amplifying the initial labor market impact of automation. 
Second, the service sector employs a much larger and more densely concentrated workforce than 
manufacturing, making it more elastic and therefore more vulnerable to technological shocks from 
robotics (Faber et al., 2022).

Panel 3 of Table 5 presents the impact of changes in robot penetration on employment dynamics in 
other industries, including agriculture, mining, construction, and utilities (gas, heat, electricity, and water 
supply). The estimation results indicate that increased robot penetration significantly reduces overall 
employment growth in these sectors—consistent with the effects observed in both manufacturing and 
services, and of comparable magnitude. However, unlike in those sectors, robot penetration does not 
have a statistically significant impact on job creation among incumbent firms in these industries; in fact, 
the estimated coefficient is positive. In contrast, it significantly reduces job destruction. The coefficient 
in Column (3) is negative and statistically significant at the 1% level, indicating a strong dampening 
effect on job destruction. Specifically, a 1% increase in robot penetration leads to a 2.6 percentage 
point reduction in the job destruction growth rates substantially larger than the corresponding effects in 
manufacturing and services.

As a result, rising robot penetration significantly enhances net employment growth for incumbent 
firms in other industries. Column (4) shows that a 1% increase in robot penetration is associated with an 
approximate 2.4 percentage point increase in net employment growth. This suggests that labor displaced 
by automation in manufacturing and services is being reallocated into sectors with relatively low robot 
penetration. The significant net labor inflow into incumbent firms in these industries reflects a clear 
pattern of cross-sectoral labor reallocation.

In summary, our industry-specific estimates indicate that rising regional robot penetration has a 
significant substitution effect not only on manufacturing employment but also on overall employment 
in the service sector and other industries (agriculture, mining, construction, and utilities such as gas, 
heat, electricity, and water supply). At the level of incumbent firms, the suppressive effect of robot 
penetration on job creation is particularly significant in the service sector. Additionally, robot adoption 
more strongly hinders within-region labor mobility in services compared to other sectors. These findings 
suggest that, in response to the shock from robot adoption, labor in both manufacturing and services 
tends to reallocate toward other industries with lower levels of automation, contributing to cross-sectoral 
employment reallocation.

To further investigate the heterogeneous effects of robots on employment across more detailed 
industry segments, we introduce interaction terms between robot penetration rates and fine-grained 
industry dummy variables. This approach allows us to examine industry-specific variations in how robot 
adoption influences employment growth3.

3 Detailed results will be provided upon request.
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4.2 Mechanism and Robustness Checks
Our empirical results reveal that increased robot penetration exerts contrasting effects on employment 

growth: a significant negative impact when considering all firms, but a positive effect for incumbent firms. This 
pattern suggests that the negative influence of robots on overall employment growth—largely driven by firm 
entry and exit dynamics—substantially outweighs their positive effect on employment growth within 
continuing firms. Nonetheless, this proposed mechanism warrants further empirical check.

Table 6 examines the effects of changes in robot penetration on firm entry and exit rates, as well 
as employment fluctuations arising from sample composition changes and cross-period adjustments in 
employment among continuously operating firms.

Thanks to the 2010 and 2016 firm-level tax survey data including exact founding dates for each firm. 
By aggregating these, we obtained the number of newly established (newly entering) firms in different 
prefecture-level cities for both years, enabling us to examine the relationship between changes in robot 
penetration and the growth rate of new firm entry. Since the tax survey database does not provide direct 
indicators for firm exit, we approximate firm exit indicator by identifying firms with zero employees at 
year-end and investigate the impact of robot penetration on firm exits accordingly.

Regression results in Column (1) of Table 6 show that, whether using two-stage least squares or 
reduced-form estimates, all coefficients are negative and statistically significant at least at the 5% level. 
This indicates that a 1% increase in regional robot penetration reduces the new firm entry growth rate 
by approximately 1.6% . Columns (2) to (5) examine the effects of increased robot penetration on firm 
exit, employment growth changes caused by sample adjustments, and employment changes due to 
cross-period adjustments in continuing firms. All estimated coefficients are negative but statistically 
insignificant, with elasticities much smaller than those for new firm entry growth. This further confirms 
that the negative impact of robot penetration on overall firm employment growth is mainly driven by the 
suppression of new firm entry, rather than by the exit of incumbent firms or other channels.

Table 6: Mechanism Test of Automation on Employment Growth (2SLS )

New firm entry Firm exit Sample adjustment Cross-period adjustment Entry/exit
(1) (2) (3) (4) (5)

Dependent variable ΔEntry ΔExit ΔNet_ADJ ΔNet_Inc ΔEnEx
Panel 1: Two-Stage Least Squares Estimation (2SLS)

chnbk
-1.651** -0.120 -0.582 -0.509 -1.410**
(0.599) (0.308) (0.388) (0.328) (0.468)

First-stage coefficient 0.437
Kp F value 22841.6 29905.3 29905.3 22920.3 27044.5
Hansen J Overid 0.594 0.019 1.661 0.002 0.120
(probability value) (0.441) (0.890) (0.197) (0.967) (0.729)

Panel 2: Reduced-Form Estimation

eurobk6
-0.692** -0.048 -0.252 -0.208 -0.586**
(0.251) (0.131) (0.162) (0.139) (0.196)

eurobk5
-0.712** -0.051 -0.254 -0.217 -0.607**
(0.263) (0.135) (0.169) (0.144) (0.205)

Base period control variables Yes Yes Yes Yes Yes
Urban industry share Yes Yes Yes Yes Yes
Industry fixed effects Yes Yes Yes Yes Yes
Observations 532 741 741 558 598
Number of cities 229 247 247 238 243
Calibrated R2 0.20 0.55 0.23 0.03 0.36

Note: Same as Table 4.
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This implies that widespread robot adoption may significantly strengthen incumbent firms’ 
advantages and inhibit new firm entry. Since new firms are a key driver of employment growth and labor 
mobility, this suggests that large-scale robot adoption substantially restricts new firm entry, thereby 
notably reducing labor reallocation at the regional level.

To further clarify the overall impact of robot adoption on labor reallocation, Column (6) of Table 
6 presents the aggregate effects of robot penetration on firm entry and exit. The regression coefficient 
remains negative and statistically significant at the 5% level, indicating that greater robot penetration 
significantly reduces both firm entry and exit rates. Taken together with the earlier analysis, these results 
suggest that robot adoption not only weakens reallocation dynamics among incumbent firms but also 
dampens overall levels of firm turnover. Since firm entry and exit are key mechanisms driving labor 
market reallocation, this implies that the adoption of industrial robots significantly reduces labor mobility 
at the regional level in China. This conclusion is consistent with empirical findings based on Chinese 
population census sample data (Chen et al., 2022), and it also aligns with evidence on the impact of 
industrial robots on labor markets in U.S. commuting zones (Acemoglu & Restrepo, 2020; Faber et al., 
2022).

To assess the robustness of the above empirical findings, this study further examines the relationship 
between robot penetration and employment growth using longer-term aggregate employment data (1999-
2019) at the prefecture-level cities4. Table 7 presents the empirical results based on city-level data. 
Since the Bartik estimation strategy essentially operates as a difference-in-differences method with a 
continuous treatment variable, it can also be used to test whether changes in robot penetration affect pre-
treatment employment trends—serving as a placebo test.

Columns (1) through (3) of Table 7 use employment growth rates from 2004 to 2010 at the 
prefecture level as the dependent variable. Both the two-stage and reduced-form regression estimates 
yield coefficients that are statistically insignificant and close to zero, suggesting that robot penetration 
changes during 2011-2017 had no effect on pre-trend employment growth. Columns (4) through (6) of 
Table 7 use employment growth rates from 2013 to 2019 as the dependent variable, while controlling for 
city-level trends in employment, population, wages, and fixed asset investment from 2000 to 2010. All 
estimated coefficients are negative and statistically significant at the 5% level. The two-stage estimate 
in Column (4) indicates that a 10% increase in robot penetration leads to an approximate 2 % reduction 
in regional employment growth. These results are fully consistent with the earlier findings based on 
aggregated firm-level data, further supporting the conclusion that robot adoption exerts a significantly 
negative effect on regional employment growth in China. Together, the results in Tables 6 and 7 suggest 
that sample selection is not a major factor driving the observed adverse impact of increased robot 
penetration on overall employment growth.

Although the firm tax survey data used in this study are carefully cleaned, a small number of firm-
level observations still showed exceptionally large employment adjustments. For instance, between 
2010 and 2016, 651 firm-year observations reported annual employment changes exceeding 10,000 
employees, 197 exceeded 50,000, and 119 exceeded 100,000. To assess whether such extreme values—
potentially stemming from unusually large firms or statistical reporting errors—might bias our results, 
we excluded observations with annual employment changes greater than approximately 10,000, 50,000, 
and 100,000 employees, respectively, and re-estimated the key regressions.

The revised results showed only slight changes in the estimated coefficients, and the main 

4 Relevant data from the China City Statistical Yearbook (2021-2023) were also consulted, revealing that comprehensive city-level employment 
indicators were not published for the years 2020-2022. Given the potential confounding effects and uncertainties brought about by the COVID-19 
pandemic, restricting the sample period to the pre-pandemic period is more conducive to identifying the true impact of robot adoption on the labor 
market.
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conclusions remained robust. Importantly, the statistical significance of the coefficient on net 
employment growth among incumbent firms improved, rising from the 10% to the 5% level. Therefore, 
we conservatively report the results using the more stringent significance threshold.

4.3 Further Evidence from Micro-Level Data
The previous empirical findings primarily focused on investigating the macro-level effects and 

mechanisms of regional robot penetration on labor reallocation. However, direct evidence on how 
robot adoption influences micro-level employment outcomes—such as individual employment status 
or occupational transitions—remains limited. Moreover, the heterogeneous effects on different types of 
individuals and transitions are not yet well understood.

Using data from the China Labor-force Dynamics Survey (CLDS), this study further investigates the 
impact of regional robot penetration on micro-level individual work transitions by tracking individuals’ 
job-switching frequencies across different time intervals. Table 8 presents the baseline results derived 
from this micro-level analysis. As the 2012 CLDS lacked detailed occupational transition data, though 
it did include job change indicators —we focus on the period 2014-2018 to ensure consistency in 
the transition indicators. Panel 1 reports the baseline 2SLS estimation results using a Bartik-style 
instrumental variable constructed from robot adoption patterns in European countries. Column (1) 

Table 7: Automation and Employment Growth: Empirical results  from City-Level Data

(1) (2) (3) (4) (5) (6)
Estimate method 2SLS OLS OLS 2SLS OLS OLS
Dependent variable ΔANET c,2004-2010 ΔANET c,2013-2019

chnbkc,2011-2017 -0.014 -0.201**
(0.062) (0.069)

eurobk6c,2011-2017 -0.009 -0.134**
(0.044) (0.048)

eurobk5c,2012-2018 -0.009 -0.129**
(0.042) (0.047)

ΔANETc,2000-2010 0.037 0.029 0.031
(0.031) (0.030) (0.030)

ΔPopc,2000-2010 0.212** 0.212** 0.213**
(0.087) (0.090) (0.090)

ΔWagec,2000-2010 0.106 0.101 0.101
(0.080) (0.083) (0.083)

ΔFCc,2000-2010 -0.018 -0.020 -0.021
(0.023) (0.024) (0.024)

First-stage estimated coefficient 0.437 0.437
Kp.F value 3339.0 4099.0
Hansen J Ovid. 0.001

(0.998)
2.049

(0.152)(Probability value)
Base period control variables Yes Yes Yes Yes Yes Yes
Urban industry share Yes Yes Yes Yes Yes Yes
Industry fixed effects 244 244 244 242 242 242
Observations 244 244 244 242 242 242
Number of cities 0.300 0.301 0.301 0.109 0.108 0.107

Note: Same as Table 4.
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examines the effect of robot penetration on the probability of an individual starting a new job. The 
estimated coefficient is negative and statistically significant at the 5% level, indicating that increased 
robot penetration significantly reduces the likelihood of job entry. Specifically, a 1% increase in regional 
robot penetration is associated with a 3.4 % decline in the probability of starting a new job.

Column (2) analyzes the impact on the probability of job loss. The coefficient is likewise negative 
and significant at the 5% level, suggesting that higher robot penetration reduces the likelihood of 
individuals losing their jobs. A 1% increase in robot penetration leads to an approximate 4 percentage 
point decline in the probability of job separation. Column (3) investigates the effect on occupational 
transitions. The result is again a negative and significant coefficient at the 5% level, showing that a 
1% increase in robot penetration is linked to a roughly 6 % decrease in the probability of switching 
occupations. These micro-level findings are highly consistent with our earlier macro-level evidence. 
Robot penetration appears to reduce labor mobility through both direct and indirect channels: it directly 
lowers job creation via displacement effects, while also reducing job destruction through productivity-
driven complementarity effects. As a result, overall labor mobility and job turnover rate decline 
significantly.

To further assess the robustness of the empirical findings, we conducted a placebo test by examining 
the effect of robot penetration on pre-treatment individual work transitions. Specifically, Columns (4) and 
(5) of Table 8 analyze the impact of changes in robot penetration from 2012 to 2018 on the probability 
that individuals started a new occupation during the periods 2000-2012 and before 2000, respectively. 
Columns (6) and (7) evaluate the corresponding effect on the probability of losing an existing occupation 
during these same time intervals. Across all four regressions, the estimated coefficients are statistically 

Table 8: Automation and Occupational Transitions: Evidence from CLDS Data (2SLS)

(1) (2) (3) (4) (5) (6) (7)

Dependent variable jobst jobed jobre jobst jobst jobed jobed

Timeframe 2014-2018 2014-2018 2014-2018 2000-2012 Before 2000 2000-2012 Before 2000

Panel 1: Industrial robots and occupational transitions: 2sls estimates
chnbk2013(2011)-2017 -0.034** -0.039** -0.061** 0.015 0.005 0.008 0.012

(0.012) (0.019)  (0.024) (0.030) (0.048) (0.029) (0.020)
First-stage estimated coefficient 1.038 0.647

Kp. F value 2059.6 1132.1

Hansen J Overid
(Probability value)

0.166 1.527 0.357 3.058 0.167 0.312 0.043
(0.683) (0.216) (0.550) (0.080) (0.683) (0.576) (0.837)

Panel 2: Industrial robots and occupational transitions: reduced-form estimates
eurobk62013-2017 -0.034** -0.044** -0.066** 0.009 0.004 0.005 0.008

(0.013) (0.019) (0.025) (0.020) (0.032) (0.019) (0.013)
eurobk52013-2017 -0.034** -0.045** -0.066** 0.010 -0.003 0.005 0.007

(0.013) (0.019) (0.025) (0.020) (0.031) (0.019) (0.013)
Individual-level control variables Yes Yes Yes Yes Yes Yes Yes

City-level control variables Yes Yes Yes Yes Yes Yes Yes

Urban industry share Yes Yes Yes Yes Yes Yes Yes

Household fixed effects Yes Yes Yes Yes Yes Yes Yes

Observations 51,991 51,991 51,991 51,991 51,991 51,991 51,991

Number of cities 141 141 141 141 141 141 141

Calibrated R2 0.108 0.108 0.108 0.108 0.108 0.108 0.108

Note: Consistent with Table 4, Columns (1)-(3) employ instrumental variables constructed using 2013-2017 data, while Columns (4)-(7) use 
instruments based on data from 2011-2017.
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insignificant and close to zero, consistent with the placebo test results from Table 7 using pre-treatment 
city-level employment growth rates as dependents.

Panel 2 of Table 8 reports reduced-form regressions using two alternative sets of Bartik instrumental 
variables—constructed from industrial robot adoption in European countries, respectively. The 
estimated coefficients and their statistical significance remain consistent with those reported in Panel 
1, confirming the reliability of the results. Whether at the macro (city) level or the micro (individual) 
level, the evidence consistently shows that increased robot penetration does not enhance regional labor 
reallocation. On the contrary, it significantly reduces overall labor mobility and job turnover rates.

4.4 Heterogeneity 
As emphasized in the introduction, the impact of robot penetration on individual job transitions 

may vary systematically by individual characteristics such as skills, occupation, age, and gender. 
To explore these potential sources of heterogeneity, we examine how changes in robot penetration 
affect job transition probabilities across different demographic and occupational groups. For clarity 
and conciseness, all heterogeneity analyses are conducted using reduced-form OLS estimations with 
instrumental variables.

Table 9: Automation and Job Reallocation: Age Heterogeneity

(1) (2) (3) (4) (5) (6)

Timeframe 2014-2018 2014-2018 2012-2018 2014-2018 2012-2018 2014-2018

Panel 1: Industrial robot adoption and new job creation (jobst)

eurobk6 -0.038***
(0.013)

-0.027*
(0.014)

-0.030**
(0.018)

-0.039**
(0.015)

-0.038**
(0.015)

-0.040***
(0.014)

Age15-25
0.145***
(0.038)

eurobk6 × Age15-25
0.034*
(0.020)

Age26-50
0.057***
(0.013)

0.079***
(0.016)

eurobk6 × Age26-50
-0.026***

(0.008)
-0.022***

(0.008)

Age51-70
-0.076***

(0.015)
-0.107***

(0.021)

eurobk6 × Age51-70
-0.000
(0.010)

-0.001
(0.010)

Age70+
-0.055**
(0.026)

eurobk6 × Age70+
0.006

(0.017)
Calibrated R2 0.087 0.059 0.075 0.072 0.094 0.059

Panel 2: Industrial robot adoption and job loss (jobst)

Timeframe 2014-2018 2014-2018 2012-2018 2014-2018 2012-2018 2014-2018

eurobk6 -0.044**
(0.020)

-0.032
(0.021)

-0.015
(0.022)

-0.062**
(0.026)

-0.030
(0.023)

-0.047**
(0.021)

Age15-25
0.164***
(0.037)

eurobk6 × Age15-25
-0.015
(0.022)

Age26-50
0.000

(0.013)
-0.009
(0.016)
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Table 9 first examines the relationship between age and the impact of industrial robots on micro-
individual job transitions. Panel 1 investigates how industrial robots affect an individual’s probability of 
starting a new job across different age cohorts. This paper categorizes individuals into four age groups: 
Youth (15-25 years), young to middle-aged adults (26-50), older working-age adults (51-70), and seniors 
(over 70), each represented by a dummy variable. By using interaction terms between robot penetration 
and these age group dummy variables, we examine the influence of robot adoption on the likelihood of 
individuals in different age stages starting new jobs.

The estimation results from Columns (1) through (6) show that after controlling for interaction terms 
and age, the estimated coefficients for robot penetration remain significantly negative at least at the 5% 
level. The estimated age parameters are significantly positive for the youth and young to middle-aged 
adult groups but significantly negative for older working-age adults and seniors. This indicates that youth 
and young to middle-aged adults have a significantly higher probability of starting new jobs compared to 
older working-aged adults and seniors, which aligns with intuition and real-world observations.

The interaction terms are of particular interest here. The estimation results show that only the 
interaction terms in Columns (2) and (3) are significantly negative, while those for other age groups are 
not statistically significant, especially for the older working-age adults and seniors, where coefficients 
are essentially zero. This means that increased robot penetration significantly reduces the probability of 
individuals in the middle age range starting new jobs compared to other age groups.

From a demand-side perspective, this pattern reflects a stronger displacement effect of robots on 
middle-aged workers, who typically occupy positions more vulnerable to automation. From a supply-
side viewpoint, this group may prioritize job stability when faced with automation risk, thereby 
exhibiting lower job mobility. To ensure robustness, regressions are conducted using two different 
sample periods—2012-2018 and 2014-2018—with consistent findings: interaction term coefficients 
remain negative and statistically significant at the 5% level or lower. This empirical finding aligns 
perfectly with the theoretical and empirical conclusions of Acemoglu & Restrepo (2022) regarding aging 
and robot adoption. They posit that aging significantly promotes robot adoption, with robots primarily 
serving to compensate for labor shortages among middle-aged workers and also demonstrating the 

eurobk6 × Age26-50
-0.031***

(0.007)
-0.018**
(0.007)

Age51-70
-0.036**
(0.018)

-0.029
(0.019)

eurobk6 × Age51-70
0.032***
(0.011)

0.015*
(0.008)

Age70+
0.001

(0.036)

eurobk6 × Age70+
-0.031
(0.024)

Calibrated R2 0.041 0.035 0.028 0.031 0.025 0.030

Individual-level control variables Yes Yes Yes Yes Yes Yes
City-level control variables in base 
period Yes Yes Yes Yes Yes Yes

Urban industry share Yes Yes Yes Yes Yes Yes

Household fixed effects Yes Yes Yes Yes Yes Yes

Observations 52,063 52,063 52,063 52,063 52,063 52,063

Number of cities 141 141 141 141 141 141

Note: Same as Table 4.

Table 9 Continued
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strongest tendency to substitute middle age group.
Panel 2 in Table 9 continues to examine the relationship between age, robot penetration, and the 

probability of individual job loss. Similar to the estimation results in Panel 1, the coefficients for the 
interaction terms in Columns (2) and (3) remain significantly negative at least at the 5% level. This 
likewise indicates that increased robot penetration significantly reduces the probability of individuals 
in the middle age range losing their jobs relative to other age groups. This means that while robot 
penetration may displace potential job opportunities for the middle age range group, it also stabilizes the 
job market by expanding output through productivity gains, thereby reducing the probability of existing 
middle-aged individuals losing their jobs.

However, the estimated coefficient for the interaction term defining employment changes in 
Column (4) (using the 2014-2018 time interval) is positive and significant at the 1% level. Similarly, the 
estimated coefficient for the interaction term defining job changes in Column (5) (using the 2012-2018 
time interval) is also positive and significant at the 10% level. Given that the robot penetration’s own 
estimated parameter is significantly negative, the positive regression parameter of the interaction term 
implies that the increase in robot penetration is less effective in reducing job loss for older working-age 
adults. This likely has a strong correlation with the greater susceptibility of older working-age adults to 
skill and job demand mismatches. The interaction parameters in Columns (1) and (6) are not significant.

The regression results in Table 9 show that the impact of changes in robot penetration on individual 
work transitions has a significant relationship with the proportion of the middle age group. The 
widespread adoption of robots significantly reduces the probability of work transitions for the middle 
age group.

Table 10 further examines how the effect of robot penetration on job transitions varies with 
individuals’ educational attainment. Education is divided into three categories: low (junior high school 
and below), medium (vocational school, high school, and junior college), and high (bachelor’s degree 
and above), each represented by a dummy variable. Interaction terms between robot penetration and 
education level dummies are introduced to assess whether individuals with different educational 
backgrounds are differentially affected in terms of starting or losing jobs. Columns (1) and (2) test 
whether the effect of robot penetration on the probability of starting a new job differs for individuals 
with low and medium education relative to other groups. The estimated coefficients of the interaction 
terms are statistically insignificant, suggesting that changes in robot penetration do not significantly alter 
the probability of low- or medium-educated individuals starting new jobs compared to others.

Column (3), using data from the 2012-2018 period, examines whether robot penetration affects 
highly educated individuals’ likelihood of starting a new job differently from that of other groups. The 
interaction term is significantly negative at the 5% level, indicating that increased robot penetration further 
decreases the probability of highly educated individuals starting new jobs relative to those with lower 
education. To test the robustness of this finding, Column (4) applies the same specification using data 
from 2014-2018, and the interaction term remains negative and statistically significant at the 10% level. 

Moreover, when household fixed effects are excluded from the model, the interaction terms in 
Columns (3) and (4) remain significantly negative at the 5% level or lower, reinforcing the robustness of 
this result5. Columns (5) through (7) assess whether the probability of job loss is differentially affected 
by robot penetration across education levels. In all specifications, the interaction terms are statistically 
insignificant and their magnitudes are close to zero, indicating that changes in robot penetration have 
no significant differential effect on job loss probabilities by education level. The results from Table 10 
suggest that robot penetration is more likely to reduce the probability of highly educated individuals 
starting new jobs. This finding is consistent with previous research showing that robots are increasingly 

5 These robustness results are not reported in the table but are available from the authors upon request.
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capable of substituting for high-skilled labor, leading to negative employment and income effects for this 
group (Bessen et al., 2019; Feng & Graetz, 2020; Koch et al., 2021; Kogan et al., 2023).

This phenomenon can be understood from both the demand and supply sides of the labor market. 
On the demand side, firms that adopt robots tend to be highly productive and face high costs for skilled 
labor. Replacing highly skilled workers or positions that require intensive training with robots can 
significantly enhance firm profitability. Furthermore, rapid advances in robot technology have increased 
their capacity to perform non-routine tasks and substitute for high-skill jobs (Frey & Osborne, 2017). 
On the supply side, highly educated individuals may respond to technological displacement by placing 
a premium on job stability, thereby exhibiting a lower propensity to transition into new roles (Fossen & 
Sorgner, 2019).

Table 10: Industrial Robot Adoption and Job Reallocation (Education Heterogeneity)

(1) (2) (3) (4) (5) (6) (7)

Dependent variable jobst jobst jobst jobst jobed jobed jobed

Timeframe 2014-2018 2014-2018 2012-2018 2014-2018 2014-2018 2014-2018 2014-2018

eurobk62013(2011)-2017
-0.047**
(0.020)

-0.039**
(0.015)

-0.038**
(0.015)

-0.039**
(0.015)

-0.052**
(0.025)

-0.048**
(0.020)

-0.049**
(0.021)

edulow
-0.071***

(0.019)
-0.037*
(0.021)

eurobk62013-2017×edulow
0.009

(0.012)
0.004

(0.013)

edumid
0.041**
(0.020)

0.039*
(0.020)

eurobk62013-2017×edumid
-0.006
(0.012)

-0.006
(0.012)

eduhig
0.262***
(0.052)

0.161***
(0.036)

0.014
(0.030)

eurobk62013(2011)-2017×eduhig
-0.052**
(0.021)

-0.038*
(0.021)

-0.003
(0.019)

Individual-level control variables Yes Yes Yes Yes Yes Yes Yes

City-level control variables Yes Yes Yes Yes Yes Yes Yes

Urban industry share Yes Yes Yes Yes Yes Yes Yes

Household fixed effects Yes Yes Yes Yes Yes Yes Yes

Observations 52,104 52,104 52,104 52,104 52,104 52,104 52,104

Number of cities 141 141 141 141 141 141 141

R2 0.046 0.042 0.053 0.046 0.024 0.024 0.023

Note: Same as Table 4.

To further investigate whether the application of industrial robots in China leads to systematic 
differences in job transitions between men and women, we adopt the same analytical framework as 
outlined earlier. The regression results indicate that, regardless of whether the dependent variable reflects 
job start or job separation, and whether the sample period is 2014-2018 or 2012-2018, all interaction 
terms between robot penetration and the gender dummy variable are statistically insignificant and have 
coefficients close to zero. This suggests that changes in robot penetration at the prefecture level do not 
have a significantly different impact on job transition rates for men and women.

Finally, we examine whether the effect of regional robot penetration on individual job transitions 
varies by occupational category. Based on micro-level data from 2014 to 2018, we classify individuals’ 



28

occupations into six major categories according to China’s occupational classification standards and 
represent each category with a dummy variable. We then include interaction terms between robot 
penetration and these occupational dummies to assess whether the effect of robot adoption on job 
transition probabilities differs by occupation. The estimated coefficients of these interaction terms are 
generally insignificant, indicating that the influence of robot penetration on individual job transitions 
does not significantly vary across different occupational types (see Appendix for details).

Robot penetration does not produce systematic differences in job transitions across gender or 
occupational groups. This finding is logically consistent with our earlier result that increases in robot 
penetration significantly displace employment not only in manufacturing but also in the service and 
other sectors—with an even greater potential displacement effect observed among incumbent firms in 
the service sector. Since women are disproportionately employed in services compared to men, and 
the service sector accounts for a much larger share of overall employment than manufacturing, these 
structural factors inevitably dilute gender or occupational differences in robot impacts at the aggregate 
regional level.

5. Conclusion and Policy Implications
The rapid expansion of intelligent industrial robots across various sectors in China has significantly 

influenced labor reallocation while driving substantial gains in firm productivity. Based on empirical 
analysis using firm-level and micro survey data, this study presents the following key findings:

First, the adoption of robots primarily strengthens the competitive position of incumbent firms, 
contributing to overall employment growth within these firms. Labor has shifted from industries with 
higher robot density to those with relatively lower robot density and larger average firm sizes. At the 
same time, robot adoption also generates market spillover effects that, to some extent, contribute to a 
deceleration in overall employment growth.

Second, while robot adoption tends to dampen job creation, it significantly improves firm 
productivity and reduces job destruction. As a result, employment stability at the regional level has 
improved.

Third, robot adoption notably increases the tendency of highly educated and middle-aged workers 
to seek job stability. This suggests that, in the long run, the application of robots may help alleviate 
operational pressures associated with an aging population and rising labor costs, thereby promoting the 
accumulation of human capital within firms.

Our empirical findings offer several important policy insights: (1) Take a comprehensive and long-
term view of the benefits of intelligent robot adoption. The development of intelligent and automated 
technologies tends to displace existing jobs relatively quickly, whereas the creation of new job 
opportunities is often a slower, more gradual process. While the application of automation technologies 
may slow overall employment growth in the short term, the advancement of next-generation automation 
is closely tied to the expansion of the digital economy and continuous innovation in digital technologies. 
The widespread adoption of intelligent robots, in particular, will further stimulate the growth of related 
digital sectors—such as cloud computing, big data, firm supply chain management, and the platform 
economy. In the long run, this process not only accelerates digital transformation and enhances firm 
productivity but also helps to offset short-term employment pressures. Ultimately, it supports broader 
and higher-quality employment across the economy by facilitating the reallocation of labor into more 
dynamic and digitally driven sectors.

(2) The impact of robots on employment growth is not solely determined by productivity gains; they 
are also deeply influenced by market demand conditions. In markets with elastic supply, employment 
growth primarily hinges on demand expansion. As emphasized in the introduction, if traditional 
industries face market saturation and experience a sharp decline in demand elasticity, then even 
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substantial productivity improvements from widespread automation may not generate enough new job 
tasks to offset the short-term displacement effects of robot adoption.

This underscores the urgency for firms to accelerate digital transformation and to deploy next-
generation automation and digital technologies within emerging industries. Automation in these sectors 
can significantly enhance productivity and drive down prices. Given that emerging industries typically 
exhibit high demand elasticity, such price reductions are likely to stimulate greater output demand. In 
turn, this will support the creation of more jobs and contribute to stable, long-term employment growth.

(3) The displacement effect of robot adoption on employment should be assessed on a case-by-
case basis. In sectors characterized by high pollution, high risk, or high labor intensity, the use of 
intelligent robots to replace human labor can not only significantly improve production efficiency but 
also help control pollution, reduce occupational hazards, and ease the physical burden on workers. For 
instance, our industry-specific empirical research indicates that robot adoption tends to have a stronger 
displacement effect in high-pollution industries such as plastics and rubber product manufacturing. This 
transformation can enhance overall labor welfare, facilitate the restructuring of employment, promote 
high-quality job growth, and support enterprises in transitioning toward green, low-carbon development. 
Conversely, in traditional labor-intensive industries that are less likely to stimulate related industrial 
development or create substantial new employment opportunities in the short term, robot adoption 
should follow a gradual approach. This helps to avoid significant short-term disruptions to employment 
growth.

(4) The widespread adoption of robots has heightened the preference for career stability among 
highly educated and middle-aged workers. Given China’s accelerating aging trend and the persistent 
shortage of middle-aged labor, the increased use of robots can effectively address future labor scarcity 
in this age group. Globally, the intensifying trend of population aging and rising costs of high-skilled 
labor have significantly driven robot adoption. This growing emphasis on job stability among highly 
educated and middle-aged individuals will further enhance human capital accumulation and investment 
among firms. Moreover, advancements in artificial intelligence extend beyond intelligent robots. The 
development of non-robot AI technologies generates significant complementary effects for many jobs, 
substantially boosting production efficiency. This is a critical area for future research.    
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